Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów ' laser' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. National Ignition Facility, najpotężniejszy na świecie zespół laserów, pobił swój kolejny rekord. Tym razem lasery dostarczyły do celu 2,15 megadżula energii. To o 15% więcej niż przewiduje specyfikacja NIF oraz ponad 10% więcej niż dotychczasowy rekord wynoszący 1,9 MJ, który ustanowiono w marcu 2012 roku. Użytkownicy NIF zawsze proszą nas o więcej energii do ich eksperymentów, gdyż im więcej energii, tym lepsze wyniki badań. Ostatnie osiągnięcie to ważny krok w kierunku zwiększania możliwości NIF. To pokazuje, że możemy pracować z wyższymi energiami niż przewidywano podczas projektowania NIF, mówi dyrektor Mark Herrmann. Celem ostatnich prac było przekonanie się, jak dużą ilość energii można uzyskać za pomocą obecnie zinstalowanego sprzętu i optyki. Maksymalizacja mocy NIF ma zasadnicze znaczenie dla głównego celu, dla którego ośrodek ten został powołany – badań nad fuzją jądrową. Ośrodek wykorzystuje 192 lasery i dziesiątki tysięcy komponentów optycznych, takich jak soczewki, lustra i kryształy. To jedne z najdoskonalszych elementów tego typu, jakie kiedykolwiek powstały. Prowadzone badania mają posłużyć też m.in. dalszemu udoskonalaniu elementów optycznych. NIF już zapisał się w historii nauki, jako pierwszy system, który dostarczył więcej niż megadżul energii. Teraz przekroczono barierę dwóch megadżuli. NIF ma jednak nie tylko rozpocząć epokę kontrolowanej reakcji termonuklearnej. Zakład posłuży do badań nad bronią jądrową. Stany Zjednoczone od ponad 20 lat nie wyprodukowały żadnej nowej głowicy jądrowej, a od 1992 roku nie przeprowadziły żadnej podziemnej próby z bronią jądrową. NIF pozwoli zachować starzejący się arsenał w dobrym stanie. W końcu trzecim z zadań National Ignition Facility będzie umożliwienie naukowcom badania tego, co dzieje się wewnątrz gwiazd. « powrót do artykułu
  2. Około 70% powierzchni Ziemi jest pokryte przez wodę, a niemal wszystkie sejsmografy znajdują się na lądach. Dotychczas jedynym sposobem ne wykrywanie niewielkich trzęsień Ziemi pod powierzchnią oceanów było zatopienie kosztownego, zasilanego akumulatorami urządzenia i późniejsze go wydobycie lub też użycie sieci sejsmografów położonych blisko wybrzeża. Sejsmolodzy nie mieli możliwości badania trzęsień, które mają miejsce pod dnem i bywają przyczyną śmiercionośnych tsunami. Jednak wkrótce może się do zmienić. W online'owym wydaniu Science ukazał się artykuł, którego autorzy opisują technikę wykorzystującą niemal milion kilometrów kabli telekomunikacyjnych ułożonych na dnie oceanów. Zdaniem autorów artykułu, możliwe jest badanie trzęsień ziemi za pomocą analizy zmian w sygnale optycznym przekazywanym przez kable. Jedyne, czego potrzeba, do lasery na obu końcach kabla i dostęp do niewielkiej części jego przepustowości. Co ważne, nie jest potrzebne żadne modyfikowanie samego kabla, a cała technika nie zakłóca jego codziennej pracy. To potencjalny przełom, mówi Anne Sheenan, sejsmolog z University of Colorado, która nie była zaangażowana w opracowanie nowej techniki. Więcej obserwacji z obszarów oceanicznych może zapełnić poważne dziury w obecnej wiedzy, dodaje. Odkrycia nowej techniki dokonał Giuseppe Mara, metrolog z National Physical Laboratowy w Teddington w Wielkiej Brytanii. Zajmuje się on światłowodami, które łączą europejskie zegary atomowe. Mara testował kabel podmorski o długości 79 kilometrów, który łączy Teddington z Reading. Wibracje ze różnych źródeł, w tym z ruchu statków nad kablem, mogą zakłócać przekazywany sygnał, wydłużając drogę światła i powodując, że faza promienia ulegnie niewielkiemu przesunięciu. Mara był przyzwyczajony do obecności takich zakłóceń. Jednak gdy analizował dane z października 2016 roku zauważył zakłócenia, które odbiegały od standardowych. Okazało się, że zakłócenia te pochodzą od lokalnego trzęsienia ziemi, które nawiedziło Włochy. To była chwila olśnienia, mówi Mara, który zdał sobie sprawę, że podmorskie kable można by wykorzystać do wykrywania trzęsień Ziemi. Uczony postanowił sprawdzić swoje przypuszczenia na przykładzie dłuższego, głębiej zanurzonego kabla. Wraz z kolegami wybrali 96-kilometrowe łącze pomiędzy Maltą a Sycylią. Zarejestrowali dzięki niemu trzęsienie ziemi o sile 3,4 stopnia. Nie byli jednak w stanie zlokalizować jego epicentrum. Okazało się jednak, że gdy z obu końców kabla wysłali promienie lasera, mogli zbadać różnice w czasie dotarcia do celu sygnału przesuniętego w fazie, co pokazywało, w którym miejscu trzęsienie zaburzyło pracę kabla. Mając do dyspozycji trzy lub cztery kable w tym regionie można by dokładnie wskazać epicentrum trzęsienia. Zdaniem Charlotte Rowe, sejsmolog z Los Alamos National Laboratory, jeśli będziemy mieli możliwość śledzenia podmorskich trzęsień ziemi zyskamy znacznie lepszą wiedzę na temat struktury i tektoniki naszej planety. Ponadto, o ile kable podmorskie zdradzą też siłę trzęsienia, możemy w ten sposób udoskonalić systemy ostrzegania przed tsunami. Marra mówi, że nowa technika jest na tyle czuła, ze pozwoli na wykrywanie trzęsień nawet w szerokich na tysiące kilometrów basenach oceanicznych. Wszystko, czego trzeba, to dodanie na obu końcach kabla laserów i urządzeń optycznych, które w sumie będą kosztowały około 100 000 USD, oraz dostęp do jednego z setek kanałów przesyłowych znajdujących się w typowym kablu. Wynajęcie dedykowanego kanału kosztuje około 100 000 dolarów rocznie w przypadku kabla pacyficznego, a w przypadku kabli atlantyckich jest tańsze. Szczerze mówiąc, właściciel kabla może podarować taki kanał sejsmologom i odpisać to sobie od podatku. Udostępnienie niewykorzystanego kanału nic go nie kosztuje, mówi Stephen Lentz, który zajmuje się kablami oceanicznymi w ramach swoich obowiązków dyrektora ds. rozwoju sieci w firmie Ocean Specialists. Nową techniką jest bardzo zainteresowany Bruce Howe, oceanograf z University of Hawai. Howe stoi obecnie na czele grupy zadaniowej, której celem jest opracowanie metody wyposażenia kabli oceanicznych w czujniki sejsmiczne, czujniki ciśnienia i temperatury. Miałyby być one umieszczane na kablu co 50–100 kilometrów. Takie czujniki, kosztujące około 200 000 dolarów za zestaw, są tańszą alternatywą dla wspomnianych wcześniej czujników zatapianych na dnie oceanu. Problem jednak w tym, że właściciele kabli podmorskich niechętnie podchodzą do tego pomysłu, gdyż obawiają się, że czujniki będą zakłócały ich pracę. Nowa technika jest jeszcze tańsza i nie zakłóca pracy kabli. Howe nazywa ją „intrygującą” i chce wraz ze swoim zespołem przeprowadzić jej testy. « powrót do artykułu
  3. Potężny laser rentgenowski został wykorzystany do podgrzania wody od temperatury pokojowej do 100 000 stopni Celsjusza w czasie krótszym niż 1/10 pikosekundy. W czasie eksperymentu powstał egzotyczny stan wody, a naukowcy mają nadzieję wykorzystać go do badań nad właściwościami życiodajnego płynu. Badanie tego typu będą miały też praktyczne przełożenie na techniki badania próbek biologicznych i innych materiałów za pomocą laserów z promieniowaniem X. Badania zostały przeprowadzone przez zespół Carla Calemana z DESY (Niemiecki Synchrotron Elektronowy) oraz szwedzkiego Uniwersytetu w Uppsali, który wykorzystał amerykański laser Linac Coherent Light Source (LCLS) ze SLAC National Accelerator Laboratory. Podczas eksperymentów w stronę strumienia wody wystrzeliwano ultrakrótkie intensywne promienie. To nie jest zwykły sposób podgrzewania wody. Normalnie, gdy podgrzewasz wodę jej molekuły trzęsą się coraz silniej i silniej, mówi Caleman. Z molekularnego punktu widzenia ciepło to ruch molekuł. Im wyższa temperatura tym szybszy ruch molekuł. Nasz sposób podgrzewania jest całkowicie różny. Intensywne promieniowanie X wyrzuca elektrony z molekuł wody i w ten sposób zaburza ich równowagę elektryczną. Więc nagle atomy odczuwają silny odrzut i zaczyna się gwałtownie poruszać, wyjaśnia uczony. W czasie krótszym niż 75 femtosekund (0,000000000000075 sekundy) woda przechodzi przemianę fazową z cieczy w plazmę, czy rodzaj elektrycznie naładowanego gazu. Jednak podczas tego przejścia woda wciąż ma gęstość ciekłej wody, gdyż jej atomy nie miały czasu, by się od siebie odsunąć, mówi współautor badań, Olof Jonsson z Uniwersytetu w Uppsali. Powstaje egzotyczny stan materii, który nie występuje na Ziemi. Ma on podobne cechy jak część plazmy w Słońcu czy w gazowym olbrzymie Jowiszu, ale ma mniejszą gęstość. Jednocześnie jest cieplejsza niż jądro Ziemi. Woda to dziwny płyn i gdyby nie to, że ma niezwykłe właściwości, wiele rzeczy na Ziemi nie byłoby takie, jakimi je znamy. Dotyczy to szczególnie życia, podkreśla Jonsson. Woda różni się od innych płynów gęstością, pojemnością cieplną czy przewodnictwem cieplnym. W przyszłości ten rozpowszechniony na Ziemi i jednocześnie tak niezwykły płyn będzie przedmiotem badań w planowym przez DESY Centrum Wiedzy o Wodzie. Najnowsze badania wykazały, że po uderzeniu bardzo silnym impulsem promieniowania przez 25 femtosekund w wodzie niemal nie zachodziły żadne zmiany strukturalne. Ale już po 75 femtosekundach zmiany takie były ewidentne. Naukowcy zauważają, że badania te pokazują, iż badanie za pomocą silnych laserów rentgenowskich wszystkiego, co nie jest kryształem, wiąże się ze zniszczeniem próbki. Trzeba brać to pod uwagę przy rozwijaniu technik obrazowania za pomocą laserów X pojedynczych molekuł i innych niewielkich próbek, dodaje Nicusor Timneanu z Uniwersytetu w Uppsali. « powrót do artykułu
×